image 2 image 4
Skip Navigation Links
 Home 
 Congress Structure 
 Important Dates 
 Venue 
 Registration 
 Pre Registered 
 Abstracts 
 Scientific Program 
 Photo and Film Festival 
 Exhibition 
 Contact Us 
 Personal page 
 past Guest Speakers 
       XXIX Annual Congress of the Iranian Society of Ophthalmology        بـیــست و نهمین کنــگــره سـالیـانه انـجـمـن چـشـم پـزشـکی ایـــران
مقاله Abstract


Title: Automatic Detection of Glaucomatous Optic Nerve Head from Optical Coherence Tomography Retinal Images
Author(s): Zahra Rafati, Yashar Sarbaz, Fedra Hajizadeh, Mahmood Rafati, Mahdad Esmaeili
Presentation Type: Oral
Subject: Glaucoma
Others:
Presenting Author:
Name: Mahdad Esmaeili
Affiliation :(optional) Tabriz University of Medical Sciences
E mail: mh.esmaeili.md@gmail.com
Phone:
Mobile: 09141036499
Purpose:

To develop an automatic method for detection of glaucoma from Spectral domain optical coherence tomography (OCT) images by image processing algorithms instead of traditional manual time consuming and labor intensive detection method for glaucomatous optic nerve head (ONH) objects.

Methods:

This study included 299 glaucoma patients, and 576 healthy participants with good quality OCT B-scans images (768 × 496) taken with the Spectralis OCT-Heidelberg Engineering, Germany. The images were classified into normal or glaucomatous types by 2 glaucoma specialists. Randomly, 656 B-Scans were selected for training data and 219 for test data. A deep convolutional neural network (CNN), as the most successful and widely used deep learning model was trained with the training data and evaluated with the test data.

Results:

The method is developed with least complicated algorithms and the results show considerable improvement in accuracy of detection the glaucoma over similar methods. The automated classification results were compared to manual results from two glaucoma specialists. The validated accuracy against test data for the CNN was 95%.

Conclusion:

OCT analysis of the ONH is useful for early glaucoma detection. This method having an acceptable result can be effective in automatic diagnosis of glaucoma and the proposed machine learning system has proved to be good identifiers for different type of Optic disk with high accuracy.

Attachment:





Skip Navigation Links
        صفحه اصلی
        ساختار کنگره
        تاریخ های مهم
        مکان برگزاری
        ثبت نام
        ثبت نام شدگان
        اطلاعات رزرو هتل
        مقالات
        برنامه کنگره
        جشنواره فیلم و عکس
        نمایشگاه
        تماس با ما
        صفحه شخصی
        جستجوی سخنران
        تور مجازی مجتمع سپید مشهد
        آرشیو کنگره سالهای گذشته
        آرشیو سخنرانان مهمان
 
ورود شرکت کنندگان
نام کاربری :
کلمه عبور :
  کلمه عبور خود را فراموش کرده ام.
Total Visits


Congress Count Down
Today Label
Last Month Label
Total Visitors Label